Tumor Suppression by RNA from C/EBPβ 3′UTR through the Inhibition of Protein Kinase Cε Activity
نویسندگان
چکیده
BACKGROUND Since the end of last century, RNAs from the 3'untranslated region (3'UTR) of several eukaryotic mRNAs have been found to exert tumor suppression activity when introduced into malignant cells independent of their whole mRNAs. In this study, we sought to determine the molecular mechanism of the tumor suppression activity of a short RNA from 3'UTR of C/EBPβ mRΝΑ (C/EBPβ 3'UTR RNA) in human hepatocarcinoma cells SMMC-7721. METHODOLOGY/PRINCIPAL FINDINGS By using Western blotting, immunocytochemistry, molecular beacon, confocal microscopy, protein kinase inhibitors and in vitro kinase assays, we found that, in the C/EBPβ 3'UTR-transfectant cells of SMMC-7721, the overexpressed C/EBPβ 3'UTR RNA induced reorganization of keratin 18 by binding to this keratin; that the C/EBPβ 3'UTR RNA also reduced phosphorylation and expression of keratin 18; and that the enzyme responsible for phosphorylating keratin 18 is protein kinase Cε. We then found that the C/EBPβ 3'UTR RNA directly inhibited the phosphorylating activity of protein kinase Cε; and that C/EBPβ 3'UTR RNA specifically bound with the protein kinase Cε-keratin 18 conjugate. CONCLUSION/SIGNIFICANCE Together, these facts suggest that the tumor suppression in SMMC-7721 by C/EBPβ 3'UTR RNA is due to the inhibition of protein kinase Cε activity through direct physical interaction between C/EBPβ 3'UTR RNA and protein kinase Cε. These facts indicate that the 3'UTR of some eukaryotic mRNAs may function as regulators for genes other than their own.
منابع مشابه
3'UTR elements inhibit Ras-induced C/EBPβ post-translational activation and senescence in tumour cells.
C/EBPβ is an auto-repressed protein that becomes post-translationally activated by Ras-MEK-ERK signalling. C/EBPβ is required for oncogene-induced senescence (OIS) of primary fibroblasts, but also displays pro-oncogenic functions in many tumour cells. Here, we show that C/EBPβ activation by H-Ras(V12) is suppressed in immortalized/transformed cells, but not in primary cells, by its 3' untransla...
متن کاملIn vitro activation of the interferon-induced, double-stranded RNA-dependent protein kinase PKR by RNA from the 3' untranslated regions of human alpha-tropomyosin.
The cellular kinase known as PKR (protein kinase RNA-activated) is induced by interferon and activated by RNA. PKR is known to have antiviral properties due to its role in translational control. Active PKR phosphorylates eukaryotic initiation factor 2 alpha and leads to inhibition of translation, including viral translation. PKR is also known to function as a tumor suppressor, presumably by lim...
متن کاملProtein Kinase Cε in the Platelet and Hippocampal Tissue as a Diagnostic Biological Marker in Alzheimer Disease
Introduction: Alzheimer disease (AD) is a neurodegenerative disorder characterized by the progressive loss of memory and other cognitive functions. Protein kinase Cε (PKCε) is an isoform that most effectively suppresses amyloid beta (Aβ) production and synaptic loss. Methods: In this study, spatial learning and memory for treated rats were evaluated by the Morris water maze test. The activity ...
متن کاملThe Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy
The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...
متن کاملProtein kinase Cε as a cancer marker and target for anticancer therapy.
Protein kinase Cε (PKCε) is a representative member of a family of novel PKC isoforms that are independent of calcium, but can be activated by phorbol esters, diacylglycerol (DAG) and phosphatidylserine (PS). This kinase is capable of modulating crucial cell functions, including proliferation, differentiation and survival. These activities depend on enzyme translocation to subcellular compartme...
متن کامل